Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Barry Crocock, ${ }^{\text {a }}$ Conor Long, ${ }^{\text {a }}$ Michael Lyons ${ }^{\text {a }}$ and R. Alan Howie ${ }^{\text {b }}$
${ }^{\text {a School }}$ of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and ${ }^{\text {b }}$ Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: r.a.howie@abdn.ac.uk

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.044$
$w R$ factor $=0.099$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Dicarbonyl($\boldsymbol{\eta}^{5}$-methylcyclopentadienyl)-$\left\{\boldsymbol{\eta}^{2}\right.$-[tricarbonyl $\left(\boldsymbol{\eta}^{6}\right.$-styrene $)$ chromium (0) $\left.]\right\}$ manganese(I)

The title compound, $\left[\mathrm{CrMn}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)(\mathrm{CO})_{5}\right]$, is a heterobimetallic complex in which the styrene ligand achieves a $\mu_{2^{-}}$ bridging function while providing η^{6} and η^{2} coordination of, respectively, the Cr and Mn atoms. However, the bond lengths and angles and, in particular, the coordination of the individual metal atoms is otherwise much as would be expected.

Comment

The title compound, (I), is a further example of a compound containing η^{2}-alkene coordination of Mn , such as those described by Crocock et al. (2003, and references therein). The case described here is, however, rather different, because the alkene involved is the double bond of the vinyl group of a styrene molecule, which is itself a component of tricarbonyl $\left(\eta^{6}\right.$-styrene)chromium(0), (II) [Khand et al., 1978; Cambridge Structural Database (Version 5.24; Allen, 2002) refcode KAPDAU (Brown \& Frazier, 1989)] and the formation of a hetero-bimetallic species is the inevitable consequence.

(I)

The molecule of (I) is shown in Fig. 1 and selected bond lengths and angles are given in Table 1. Both of these employ the centroids of the aromatic rings, unlabelled in Fig. 1 but designated in Table 1 as $C g 1$ and $C g 2$ for the cyclopendienyl and benzene ring, respectively, and likewise $M b$ for the midpoint of the $\mathrm{C} 18=\mathrm{C} 19$ bond, in order to simplify the presentation. Both metal atoms are then readily seen to be effectively four-coordinate, with their coordination in the form of a trigonal pyramid with the aryl ring in the apical position in each case. The $M-\mathrm{C}_{\text {aryl }}$ distances are in the respective ranges 2.121 (4)-2.199 (4) \AA for $M=\mathrm{Mn}$ and cyclopentadienyl, and 2.204 (4)-2.269 (4) \AA for Cr and benzene. These ranges differ, as do the displacements of M from the ring planes, but now in the opposite sense, i.e. $\mathrm{Mn} 1-C g 1=1.790$ (2) \AA and $\mathrm{Cr} 1-C g 2$ $=1.7295$ (19) \AA. The $M-\mathrm{C}_{\mathrm{CO}}$ distances show the opposite trend to that of the displacements from the aryl rings, being 1.770 (5) and 1.785 (5) \AA for Mn and in the range 1.823 (4)1.841 (4) \AA for Cr . The description of the coordination of Cr

Figure 1
The molecule of (I), showing the labelling scheme. Non-H atoms are drawn as 20% probability displacement ellipsoids and H atoms as small circles of arbitrary radii. For clarity, dashed lines have been used to represent bonds between the metal atoms and the double bond and the aryl rings.
and Mn as trigonal pyramidal is justified by the fact that all of the $C g-M-X$ angles, where X is a basal ligand atom, e.g. C 1 , C 2 or $M b$ for $M=\mathrm{Mn}$, or $\mathrm{C} 3, \mathrm{C} 4$ or C 5 for $M=\mathrm{Cr}$, are greater than 120°, while all angles of the form $X-M-X^{\prime}$ are less than 100°. The wider range of $X-M-X^{\prime}$ angles at Mn, viz. $87.83(19)-99.35(19)^{\circ}$ as against 88.26 (18)-90.79 (19) ${ }^{\circ}$ at Cr , is characteristic of the presence of the η^{2} double-bond ligand in the coordination of Mn . Of interest in the coordination of the metal atoms are the positions of the aryl rings in terms of their rotation in their own planes about the vectors joining their centroids to the metal atoms. For the cyclopentadienyl ring associated with Mn 1 , the torsion angles of the form $\mathrm{C} 10-$ $C g 1-\mathrm{Mn} 1-X(X=M b, \mathrm{C} 1$ or C 2 ; Table 1$)$ show that the methyl group in (I) is cis to the $\mathrm{C} 18=\mathrm{C} 19$ bond. In dicarbonyl $\left(\eta^{2}\right.$-cis-cyclooctene $)\left(\eta^{5}\right.$-methylcyclopentadienyl)manganese(I) (Crocock et al., 2003), however, the torsion angles corresponding by type to those given in Table 1 are 124.02 (19), 2.5 (2) and -110.7 (2) ${ }^{\circ}$, thus showing that in this case the methyl group is cis to one of the carbonyl groups. For the benzene ring associated with Cr 1 , the torsion angles of the form $X-\mathrm{Cr} 1-\mathrm{Cg} 2-Y(X=\mathrm{C} 3, \mathrm{C} 4$ or $\mathrm{C} 5 ; Y=\mathrm{C} 15, \mathrm{C} 17$ or $\mathrm{C} 13)$ reveal that the three atoms of the benzene ring almost eclipse the $\mathrm{Cr}-\mathrm{C}_{\mathrm{CO}}$ bonds, but to a lesser extent than was found in KAPDAU, where the equivalent torsion angles were of the order of $8.7(2)^{\circ}$.

Experimental

Compound (I) was synthesized by the photochemical substitution of a carbonyl ligand of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CH}_{3}\right) \mathrm{Mn}(\mathrm{CO})_{3}$ in tetrahydrofuran (THF) and subsequent reaction of the THF adduct with (II). In the solid state, the compound is relatively stable on exposure to air and light, but it decomposes rapidly in solution. For this reason, crystals suitable for analysis were grown from a diethyl ether/hexane solution at 298 K in the dark over a period of 3-5 d.

Crystal data
$\left[\mathrm{CrMn}\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)(\mathrm{CO})_{5}\right]$
$M_{r}=430.25$
Monoclinic, $P 2_{1} / c$
$a=7.281$ (4) \AA
$b=23.637(14) \AA$
$c=10.502(5) \AA$
$\beta=99.19$ (4) ${ }^{\circ}$
$V=1784.2(17) \AA^{3}$
$Z=4$
$D_{x}=1.602 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.6$ (1) $\mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by density-gradient method
Mo $K \alpha$ radiation
Cell parameters from 14
reflections
$\theta=7.5-10.5^{\circ}$
$\mu=1.34 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, red-brown
$0.50 \times 0.50 \times 0.20 \mathrm{~mm}$

Data collection

Nicolet P3 diffractometer ω scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.561, T_{\text {max }}=0.764$
3422 measured reflections
3167 independent reflections
2247 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0468 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.32 \mathrm{e}^{-3}$

Table 1
Selected bond lengths and angles $\left(\AA^{\circ},{ }^{\circ}\right)$ for (I).

$\mathrm{Mn} 1-\mathrm{Cg} 1$	$1.790(2)$	$\mathrm{Cr} 1-\mathrm{Cg} 2$	$1.7295(19)$
$\mathrm{Mn} 1-\mathrm{C} 1$	$1.770(5)$	$\mathrm{Cr} 1-\mathrm{C} 3$	$1.823(4)$
$\mathrm{Mn} 1-\mathrm{C} 2$	$1.785(5)$	$\mathrm{Cr} 1-\mathrm{C} 4$	$1.827(5)$
$\mathrm{Mn} 1-\mathrm{Mb}$	$2.043(4)$	$\mathrm{Cr} 1-\mathrm{C} 5$	$1.841(4)$
$\mathrm{Mn} 1-\mathrm{C} 18$	$2.163(4)$		
$\mathrm{Mn} 1-\mathrm{C} 19$	$2.155(4)$		$1.154(4)$
$\mathrm{C} 1-\mathrm{O} 1$	$1.160(5)$	$\mathrm{C} 3-\mathrm{O} 3$	$1.158(5)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.142(5)$	$\mathrm{C} 4-\mathrm{O} 4$	$1.147(4)$
$\mathrm{C} 18-\mathrm{C} 19$	$1.397(6)$	$\mathrm{C} 5-\mathrm{O} 5$	
			$127.63(15)$
$\mathrm{Cg} 1-\mathrm{Mn} 1-\mathrm{C} 1$	$121.24(16)$	$\mathrm{Cg} 2-\mathrm{Cr} 1-\mathrm{C} 3$	$125.51(15)$
$\mathrm{Cg} 1-\mathrm{Mn} 1-\mathrm{C} 2$	$122.23(16)$	$\mathrm{Cg} 2-\mathrm{Cr} 1-\mathrm{C} 4$	$124.67(15)$
$C g 1-\mathrm{Mn} 1-\mathrm{Mb}$	$124.11(15)$	$\mathrm{Cg} 2-\mathrm{Cr} 2-\mathrm{C} 5$	$88.26(18)$
$\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{C} 2$	$87.83(19)$	$\mathrm{C} 3-\mathrm{Cr} 1-\mathrm{C} 4$	$88.11(18)$
$\mathrm{C} 1-\mathrm{Mn} 1-\mathrm{Mb}$	$93.30(19)$	$\mathrm{C} 3-\mathrm{Cr} 1-\mathrm{C} 5$	$90.79(19)$
$\mathrm{C} 2-\mathrm{Mn} 1-\mathrm{Mb}$	$99.35(19)$	$\mathrm{C} 4-\mathrm{Cr} 1-\mathrm{C} 5$	$179.3(4)$
$\mathrm{Mn} 1-\mathrm{C} 1-\mathrm{O} 1$	$178.9(5)$	$\mathrm{Cr} 1-\mathrm{C} 3-\mathrm{O} 3$	$178.4(4)$
$\mathrm{Mn} 1-\mathrm{C} 2-\mathrm{O} 2$	$176.1(3)$	$\mathrm{Cr} 1-\mathrm{C} 4-\mathrm{O} 4$	$178.54(4)$
$\mathrm{C} 18-\mathrm{Mn} 1-\mathrm{C} 19$	$33.75(16)$	$\mathrm{Cr} 1-\mathrm{C} 5-\mathrm{O} 5$	
			$18.0(3)$
$\mathrm{C} 10-\mathrm{Cg} 1-\mathrm{Mn} 1-\mathrm{Mb}$	$17.0(3)$	$\mathrm{C} 3-\mathrm{Cr} 1-\mathrm{Cg} 2-\mathrm{C} 15$	18
$\mathrm{C} 10-\mathrm{Cg} 1-\mathrm{Mn} 1-\mathrm{C} 1$	$-102.5(3)$	$\mathrm{C} 4-\mathrm{Cr} 1-\mathrm{Cg} 2-\mathrm{C} 17$	$18.0(3)$
$\mathrm{C} 10-\mathrm{Cg} 1-\mathrm{Mn} 1-\mathrm{C} 2$	$148.3(3)$	$\mathrm{C} 5-\mathrm{Cr} 1-\mathrm{Cg} 2-\mathrm{C} 13$	$17.0(3)$

Note: $C g 1, C g 2$ and $M b$ are, respectively, the centroids of the cyclopentadienyl and benzene rings and the mid-point of the $\mathrm{C} 18=\mathrm{C} 19$ bond.

H atoms were placed in calculated positions and refined with a riding model, with $\mathrm{C}-\mathrm{H}=0.96$ and $0.93 \AA$, and $U_{\text {iso }}=1.5$ and 1.2 times $U_{\text {eq }}$ of the parent C atom, for methyl and all other H atoms, respectively. The rotational orientation of the rigid body methyl group was also refined.

Data collection: P3 Software (Nicolet, 1980); cell refinement: P3 Software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

We acknowledge the use of the EPSRC's Chemical Database Service (Fletcher et al., 1996) at Daresbury.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Brown, G. M. \& Frazier, C. C. (1989). Acta Cryst. C45, 1158-1161.
Crocock, B., Long, C. \& Howie, R. A. (2003). Acta Cryst. E59, m676-m678.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Fletcher, D. A., McMeeking, R. F. \& Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.
Howie, R. A. (1980). RDNIC. University of Aberdeen, Scotland.
Khand, I. U., Mahaffy, C. A. \& Pauson, P. L. (1978). J. Chem. Res. (S), pp. 352353; J. Chem. Res. (M), pp. 4454-4470.
Nicolet (1980). Nicolet P3/R3 Data Collection Operator's Manual. Nicolet XRD Corporation, 10061 Bubb Road, Cupertino, CA 95014, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

